SHORT COMMUNICATION

FLAVONOIDS OF NELUMBIUM SPECIOSUM

S. SANKARA SUBRAMANIAN, K. J. JOSEPH and A. G. R. NAIR

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-6, India

(Received 1 November 1968)

Plant. Nelumbium speciosum Willd. (Syn. Nelumbo nucifera Gaertn.)—Nymphaeaceae Occurrence. Throughout India as an aquatic herb with stout creeping rhizome. Uses. Medicinal.¹

Previous Work

Leaves. Quercetin-3-glucosylglucuronide,² quercetin, isoquercitrin, leucocyanidin and leucodelphinidin.³ Flower (petals). Luteolin, glucosylluteolin and isoquercitrin,³ kaempfero and kaempferol-3-galactosylrhamnoside.⁴ Kaempferol-3-diglucoside also recorded in this plant ⁵ (organ not stated).

Present Work

Torus. (Fresh mature material, 3-4 in. size, extracted EtOH and fractioned with petrol. ether, ether and ethyl acetate). Meratin (quercetin 3-diglucoside). (Isolated from ethyl acetate fraction) m.p. $182-183^{\circ}$, acetate m.p. $158-160^{\circ}$, R_f , acid hydrolysis: quercetin and two moles of glucose. Hyperoside (quercetin 3-galactoside) (Mother liquor after removal of meratin subjected to preparative chromatography) identified by colour reactions, R_f and co-chromatography, acid hydrolysis: quercetin and galactose. Quercetin and kaempferol 3-glucoronides. (From aqueous layer after ethyl acetate extraction, separated by preparative paper chromatography using water as solvent) highly soluble in water identified by R_f ; acid hydrolysis: quercetin and kaempferol.

Seeds. (CHCl₃ extract of dried seeds chromatographed on neutral alumina). β -sitosterol (benzene: petrol, 1:1 eluate) m.p. and mxd. m.p. 137–138°, $[\alpha]_D^{28}$ –37·5° (CHCl₃), acetate m.p. and mxd. m.p. 132–133°.

Embryo. (Fresh greenish yellow material, extracted MeOH). Luteolin 7-glucoside. (R_f and co-chromatography, acid hydrolysis: luteolin and glucose.) Rutin. (R_f and co-chromatography, acid hydrolysis: quercetin, glucose and rhamnose.) Hyperoside. (R_f and co-chromatography, acid hydrolysis: quercetin and galactose).

¹ Wealth of India, Raw Materials, Vol. III, p. 7, Council of Scientific and Industrial Research, New Delhi (1966).

² T. NAKHAOKI, N. MORITA, Y. NAGATA and H. OGURI, J. Pharm. Soc., Japan 81, 1158 (1961).

³ S. Nagarajan, A. G. R. Nair, S. Ramakrishnan and S. Sankara Subramanian, Current Sci. 35, 176 (1966).

⁴ W. RAHMAN, M. ILYAS and A. W. KHAN, Chem. Abstr. 57, 10224 (1962).

⁵ J. B. HARBORNE, Comparative Biochemistry of Flavonoids, pp. 69, 70, Academic Press, London (1967).

⁶ J. B. Harborne, *Chromatographic Reviews* (edited by M. Lederer), Vol. II, p. 112, Elsevier, New York (1960).